positions about the M(1) centre is 1.59 Å for CuTi₂(PO₄)₃ and 2.18 (neutron), 2.25 Å (X-ray) for CuZr₂(PO₄)₃. The small discrepancy between these last values is probably a result of the experimental conditions. In both cases the refinement procedures were complete and it would not be meaningfull to try to refine more detailed structural models. Actually, the least-squares deviations are usually an underestimation of the real e.s.d. and the Cu positions within M(1) are probably subjected to greater uncertainties than the non-Cu atoms.

At first sight coexistence of two Cu atoms within the same M(1) site seems to be unrealistic. Nevertheless, the two reported fluorescence bands of CuZr₂(PO₄)₃ arise clearly from two distinct excitation centres (Le Polles *et al.*, 1988). The present investigation, however, cannot relate these emissions to the existence of two crystallographic sites of the Cu ion.

As was described in detail by Rath, Holt & Tanimura (1985) various fluorescent Cu^I complexes show low-energy emissions with their maximum located between 550 and 628 nm as Cu^I—Cu^I distances are less than 2.8 Å. The question of interaction between metal-metal centres in d^{10} systems is then raised. Previous calculations of Mehotra & Hoffmann (1978) do not exclude soft attractive Cu^I—Cu^I interactions and the creation of such pairs could explain the room-temperature luminescence of CuZr₂(PO₄)₃. The occurrence of such pairs with a more precise determination of the Cu^I—Cu^I nearest neighbours is presently under examination by an EXAFS investigation.

References

- EL JAZOULI, A., SERGHINI, A., BROCHU, R., DANCE, J. M. & LE FLEM, G. (1985). C. R. Acad. Sci. Ser. 300, 493–496.
- HAGMAN, L. & KIERKEGAARD, P. (1968). Acta Chem. Scand. 22, 1822-1832.
- ISHIGURO, T., KITAZAWA, A., MITUZANI, N. & KATO, M. (1981). J. Solid State Chem. 40, 170–174.
- LE POLLES, G., EL JAZOULI, A., OLAZCUAGA, R., DANCE, J. M., LE FLEM, G. & HAGENMULLER, P. (1987). *Mater. Res. Bull.* 22, 1171–1177.
- LE POLLES, G., PARENT, C., OLAZCUAGA, R., LE FLEM, G. & HAGENMULLER, P. (1988). C. R. Acad. Sci. Ser. II, 306, 765-769.
- MARINDER, B. O. & WAHLSTRÖM, E. (1984). Chem. Scr. 23, 157–160.
- MARINDER, B. O., WERNER, P. E., WAHLSTRÖM, E. & MALMROS, G. (1980). Acta Chem. Scand. Ser. A, 34, 51-56.
- MBANDZA, A., BORDES, E., COURTINE, P., EL JAZOULI, A., SOUBEYROUX, J. L., LE FLEM, G. & HAGENMULLER, P. (1988). *Reactivity Solids*, 5, 315–321.
- McCARRON, E. M. & CALABRESE, J. C. (1986). J. Solid State Chem. 65, 215–224.
- McCarron, E. M., Calabrese, J. C. & Subramanian, M. B. (1987). *Mater. Res. Bull.* 22, 1421–1426.
- MEHOTRA, P. K. & HOFFMANN, R. (1978). Inorg. Chem. 17, 2187-2189.
- PETIT, D., COLOMBAN, P., COLLIN, G. & BOILEAU, J. P. (1986). Mater. Res. Bull. 21, 365-371.
- RATH, N. P., HOLT, E. & TANIMURA, K. (1985). Inorg. Chem. 24, 3934–3938.
- RUDOLF, P. R., SUBRAMANIAN, M. A., CLEARFIELD, A. & JORGENSEN, J. D. (1985). Solid State Ion. 17, 337–342.
- SERGHINI, A., KACIMI, M., ZYIAD, M. & BROCHU, R., (1988). J. Chim. Phys. Phys.-Chim. Biol. 85, 499–504.
- SLJUKIC, M., MATKOVIC, B., PRODIC, B. & ANDERSON, D. (1969). Z. Kristallogr. 130, 148–161.
- SWANSON, H. E. & FUYAT, R. K. (1953). Natl Bur. Stand. (US) Circ. 539, 23–25.
- WILES, D. B. & YOUNG, R. (1981). J. Appl. Cryst. 14, 149–151. YAO, P. C. & FRAY, D. J. (1983). Solid State Ion. 8, 35–42.

Acta Cryst. (1992). C48, 1744-1747

A Niobium Silicophosphate Belonging to the Niobium Phosphate Bronze Series: K₄Nb₈P₄SiO₃₄

BY A. LECLAIRE, M. M. BOREL, J. CHARDON, A. GRANDIN AND B. RAVEAU

Laboratoire de Cristallographie et Sciences des Matériaux, CRISMAT ISMRa, Boulevard de Maréchal Juin, 14050 Caen CEDEX, France

(Received 8 July 1991; accepted 13 February 1992)

Abstract. Niobium potassium silicophosphate, $K_4Nb_8P_4SiO_{34}$, $M_r = 1595.6$, tetragonal $P\overline{4}m2$, a = 10.6050 (9), c = 6.4099 (5) Å, V = 720.9 (1) Å³, Z = 1, $D_x = 3.67$ Mg m⁻³, λ (Mo $K\alpha$) = 0.71073 Å, $\mu = 3.90$ mm⁻¹, F(000) = 750, T = 294 K, R = 0.030, wR = 0.028 for 793 reflections with $I > 3\sigma(I)$ out of 3355 unique reflections measured. This oxide is isotypic with Na_{2-x}K₂Nb₈P₅O₃₄, *i.e.* its structure consists of similar $[Nb_6P_4O_{26}]_{\infty}$ double layers related to the hexagonal tungsten bronzes which are linked through $[Nb_2SiO_8]_{\infty}$ chains instead of $[Nb_2PO_8]_{\infty}$ chains. It represents the first member of the niobium phosphate bronze series $(K_3Nb_6P_4O_{26})_n(KNb_2MO_8)$ with M = P, Si. The stability of the structure is discussed in terms of the size of the cages where K atoms are located.

0108-2701/92/101744-04\$06.00

© 1992 International Union of Crystallography

Introduction. The different studies of niobium phosphate bronzes (Borel, Goreaud, Grandin, Labbé, Leclaire & Raveau, 1991; Benabbas, Borel, Grandin, Leclaire & Raveau, 1991; Costentin, Borel, Grandin, Leclaire & Raveau, 1991) on the one hand and of niobium silicates (Shanon & Katz, 1970; Choisnet, Nguyen, Groult & Raveau, 1976; Crosnier, Guyomard, Verbaere & Piffard, 1990) on the other, have shown the existence of original frameworks closely related to the tunnel structures of pure octahedral oxygen bronzes. However, silicates and phosphates always exhibit different structures in spite of the similar tetrahedral coordination of Si and P atoms. Moreover, the existence of niobium silicophosphates corresponding to substitution of Si for P in one of these structures has not been observed owing to the different size of these elements and to the great rigidity of the PO_4 and SiO_4 tetrahedra. During the investigation of the K-Nb-P-O system, in evacuated silica ampoules we have isolated a new silicophosphate K₄Nb₈P₄SiO₃₄. We report here the structure of this phase which is isotypic with β -Na_{2-x}K₂Nb₈P₅O₃₄ (Benabbas, Borel, Grandin, Chardon, Leclaire & Raveau, 1991) and can be considered as a substituted bronzoid of the series $(K_3Nb_6P_4O_{26})_nKNb_2PO_8.$

Experimental. The growth of single crystals of the bronzoid K₄Nb₈P₄SiO₃₄ was performed in two steps. First a stoichiometric mixture of K_2CO_3 , $H(NH_4)_2$ - PO_4 and Nb_2O_5 corresponding to the nominal composition 'KNb₂PO₈' was heated at 673 K to eliminate CO_2 , NH₃ and H₂O. In the second step, the resulting finely ground product was sealed in an evacuated silica ampoule. This sample was then heated to 1273 K during two months and quenched at room temperature. In this mixture, two sorts of colourless crystals have been isolated. One sort is isotypic with K7Nb14P9O60, and the other with β -Na_{2-x}K₂Nb₈P₅O₃₄. The composition of the second type of crystal 'K₄Nb₈P₄SiO₃₄' was initially determined by microprobe analysis and then with precision by the structure refinement of the selected crystal.

Subsequently, a reaction to prepare pure compound $K_4Nb_8P_4SiO_{34}$ was performed but synthesis of the pure phase proved unsuccessful.

A crystal of dimensions $0.103 \times 0.026 \times 0.026$ mm was used for data collection on an Enraf-Nonius diffractometer. Unit-cell dimensions were determined by least squares on 25 reflections, $\pm 2\theta$, $18 \le \theta \le$ 22° . Intensity measurements were made to $\theta = 45^{\circ}$ with an $\omega -\frac{4}{3}\theta$ scan of width $(1 + 0.35\tan\theta)^{\circ}$ and a counter slit aperture of $(1 + \tan\theta)$ mm; values determined by a study of reflections in the $\omega - \theta$ plane $[h - 0 \rightarrow 21, k - 0 \rightarrow 21, l - 0 \rightarrow 12]$. Scanning speed was adjusted to obtain $\sigma(l)/l \le 0.018$ or to approach Table 1. Atomic coordinates and equivalent isotropic thermal parameters (A^2)

$B_{eq} =$	$(4/3)\sum_{i}\sum_{j}\boldsymbol{\beta}_{ij}\mathbf{a}_{i}\mathbf{a}_{j}.$	
------------	---	--

	x	у	z	Beq		
√b(1)	0.500	0.1847 (1)	0.2035 (1)	1.04 (1)		
√b(2)	0.17750 (5)	0.178	0.000	0.910 (6)		
i	0.500	0.500	0.000	0.37 (5)		
•	0.2397 (1)	0.240	0.500	0.52 (2)		
(1)	0.000	0.000	0.500	2.20 (7)		
k (2)	0.000	0.500	0.2923 (8)	4.0 (1)		
k (3)	0.500	0.500	0.500	3.95 (8)		
XI	0.500	0.000	0.261 (2)	1.3 (2)		
X2)	0.3638 (4)	0.1747 (5)	0.0215 (8)	1.07 (8)		
X(3)	0.3790 (4)	0.2154 (5)	0.4530 (7)	1.33 (9)		
X(4)	0.500	0.3819 (7)	0.145 (1)	1.4 (1)		
xisi 👘	0.1756 (8)	0.000	0.032 (1)	1.6 (1)		
X(6)	0.1586 (4)	0.1982 (4)	0.3115 (6)	0.74 (7)		
	• •					

it in 60 s. Three standards (605, 006, 353), monitored for counting every 3600 s and for orientation every 600 reflections, showed no significant trends. No corrections were made for extinction or absorption. The structure was solved by the heavy-atom method. Full-matrix least-squares refinement was based on F. Usual f' and f'' values were obtained from International Tables for X-ray Crystallography (1974, Vol. IV). 70 parameters were refined, yielding R = 0.030, wR = 0.028 $[w = 1/\sigma^2(F)]$, S = 0.999. $\Delta/\sigma < 0.005$, $\Delta \rho < 1.3$ e Å⁻³. Calculations were performed on a MicroVAX II computer with the SDP system (B. A. Frenz & Associates, Inc., 1982). Atomic parameters are given in Table 1.*

Discussion. This new bronzoid is closely related to the niobium phosphate bronzes $(K_3Nb_6P_4O_{26})_n$ -(KNb₂PO₈). Like the different members of this series, α -K₄Nb₈P₅O₃₄ (Benabbas, Borel, Grandin, Leclaire & Raveau, 1990b), β -Na_{2-x}K₂Nb₈P₅O₃₄ (Benabbas *et al.*, 1991), K₇Nb₁₄P₉O₆₀ (Leclaire, Benabbas, Borel, Grandin & Raveau, 1989) and K₃Nb₆P₄O₂₆ (Benabbas, Borel, Grandin, Leclaire & Raveau, 1990a), its structure consists of $[Nb_3P_2O_{13}]_{\infty}$ layers derived from the hexagonal tungsten bronze (HTB) (Magneli, 1953) by replacing NbO₆ octahedra by PO_4 tetrahedra (Fig. 1). In fact, this oxide is isotypic with β -Na_{2-x}K₂Nb₈P₅O₃₄, *i.e.* it contains similar double [Nb₆P₄O₂₆]_∞ layers which are linked along a by [Nb₂SiO₈]_∞ chains, instead of [Nb₂PO₈]_∞ chains in the pure phosphate compound as shown from the projection into the (001) plane (Fig. 2). This ordered replacement of phosphorus by silicon in the niobium phosphate bronze β -Na_{2-x}K₂Nb₈P₅O₃₄ suggests the possible existence of the series of $(K_3Nb_6P_4O_{26})_n(KNb_2SiO_8)$ in which bronzoids $K_4Nb_8P_4SiO_{34}$ represents the first member.

* Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55193 (8 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: DU0309]

Table 2.	Distances	(Å) and	angles	(°) in	the	NbO ₆ ,
PO ₄ and S	SiO ₄ polyhe	edra and	main K	—O di	stan	ces (Å)

The Nb—O(*i*) or P—O(*i*) or Si—O(*i*) are on the diagonal, above it are the O(i)—O(*j*) distances and under it are O(i)—Nb—O(*j*) or O(i)—P—O(*j*) or O(i)—P—O(*j*) or O(i)—Si—O(*j*) angles.

Nb(1)	O(1)	O(2)	O(2 ⁱ)	O(3)	O(3 ⁱ)	O(4)
om	1.993 (3)	2.808 (9)	2.808 (9)	2.893 (8)	2.893 (8)	4 12 Ú
0(2)	93.5 (3)	1.859 (5)	2.888 (9)	2.804 (9)	3.91 (1)	2.75 (1)
O(2 ⁱ)	93.5 (3)	101.9 (4)	1.859 (5)	3.91 (1)	2,804 (9)	2.75 (1)
0(3)	90.6 (3)	90.7 (3)	166.5 (2)	2.076 (5)	2.57 (1)	2.94 (1)
0(3)	90.6 (3)	166.5 (2)	90.7 (3)	76.4 (3)	2.076 (5)	2.94 (1)
O(4)	179.4 (5)	86.9 (3)	86.9 (3)	88.9 (3)	88.9 (3)	2.124 (9)
Nb(2)	O(2)	O(2 ⁱⁱ)	O(5)	O(5 ⁱⁱ)	O(6)	O(6 ⁱⁱ)
0(2)	1.981 (5)	2.85 (1)	2.72(1)	3.87 (1)	2 873 (8)	2 770 (7)
0(2")	92.0 (4)	1.981 (5)	3.87 (1)	2.72(1)	2,770 (7)	2 873 (8)
ō Ś	89.3 (4)	177.3 (4)	1.894 (1)	2.67 (1)	2.768 (8)	2,782 (9)
O(5 ⁱⁱ)	177.3 (4)	89.3 (4)	89.5 (6)	1.894 (1)	2,782 (9)	2 768 (8)
000	91.8 (2)	87.6 (2)	90.0 (3)	90.6 (3)	2.019 (5)	4.04 (1)
O(6 ⁴)	87.6 (2)	91.8 (2)	90.6 (3)	90.0 (3)	179.2 (3)	2.019 (5)
Si	O (4	l)	O(4 ⁱⁱ)	O(4 ⁱⁱⁱ)	· ()(4 ⁱ ~)
O(4)	1.561	(9)	2.57 (2)	2.51 (2)	2.	57 (2)
O(4 ⁶)	110.9	(4)	1.561 (9)	2.57 (2)	2.	51 (2)
O(4 ^{±1})	106.7	(7)	110.9 (4)	1.561 (9)	2.	57 (2)
O(4")	110.9	(4)	106.7 (7) ·	110. <u>9 (</u> 4)	1.	561 (9)
P	0(:	3)	O(3')	O(6)) (6°)
O(3)	1.530	(5)	2.53 (1)	2.513 (7)	2.	513 (7)
O (3 ['])	111.4	ເຄັ	1.530 (5)	2.513 (7)	2	513 (7)
ര്ത്	109.6	(3)	109.6 (3)	1.546 (5)	2.4	488 (9)
O(6')	109.6	(3)	109.6 (3)	107.1 (4)	1.	546 (5)
K(1)—O(6)	2.9	51 (5) × 8	K(2	c)—O(1 ^m)	2.86 (1)	
			K(2	2)0(2)	3.092 (8)	× 4
K(3)O(3)	3.2	94 (6) × 8	K(2	2)—O(3)	3.087 (7)	× 3
K(3)O(4)	2.6	0 (1) × 4	• •	and the second	· · · ·	· · · · · ·

Symmetry code: (i) 1 - x, y, z; (ii) y, x, -z; (iii) 1 - x, 1 - y, z; (iv) 1 - y, x, -z; (v) y, x, 1 - z; (vi) -y, x, 1 - z.

Fig. 1. $[Nb_3P_2O_{13}]_{\infty}$ layers in $Na_{2-x}K_2Nb_8P_5O_{34}$.

The geometry of the polyhedra NbO₆ and PO₄ in K₄Nb₈P₄SiO₃₄ (Table 2) is quite similar to that of their equivalent polyhedra in the phosphate bronze β -Na_{1.73}K₂Nb₈P₅O₃₄. The Nb(1) octahedron which forms the [Nb₂SiO₈]_∞ chains is more distorted than the Nb(2) one. The PO₄ tetrahedron has P—O bonds and O—P—O angles characteristic of an almost regular monophosphate group and the SiO₄ tetrahedron is also almost regular (Table 2).

For the K cations, one observes three sorts of sites. K(1) is located in a site only formed of NbO₆ octahedra and PO₄ tetrahedra, as in β -Na_{2-x}K₂Nb₈P₅O₃₄; consequently, K(1) exhibits the same eightfold coordination as in the latter pure phosphate bronze, with Nb—O distances of 2.951 Å

(Table 2). The second type of site in which the Nb₂SiO₈ are involved is located at the intersection of BM and HTB tunnels; in this site K(2) is characterized by a ninefold coordination with distances ranging from 2.860 to 3.092 Å very similar to those shown for (K,Na) in β -Na_{1.73}K₂Nb₈P₅O₃₄. In the third site, K(3) exhibits a 12-fold coordination with four short K-O bonds of 2.60 Å and eight long distances of 3.294 Å. This site, surrounded by NbO₆ octahedra, PO₄ tetrahedra and SiO₄ tetrahedra, corresponds to that which is only occupied by Na in $Na_{2-x}K_2Nb_8P_5O_{34}$, with four Na-O distances of 2.54 Å. From the comparison of K(3)-O and Na-O distances it is clear that the replacement of P by a larger element like Si is absolutely necessary to form larger cages allowing a pure K phase to be synthesized. Nevertheless, the rather small K(3)—O distances (2.598 Å) observed for the silicophosphate $K_4Nb_8P_4SiO_{34}$ explain the difficulty in synthesizing such a compound.

References

- B. A. FRENZ & ASSOCIATES, INC. (1982). SDP Structure Determination Package. College Station, Texas, USA.
- BENABBAS, A., BOREL, M. M., GRANDIN, A., CHARDON, J., LECLAIRE, A. & RAVEAU, B. (1991). J. Solid State Chem. 91, 323-330.
- BENABBAS, A., BOREL, M. M., GRANDIN, A., LECLAIRE, A. & RAVEAU, B. (1990a). J. Solid State Chem. 84, 365-374.
- BENABBAS, A., BOREL, M. M., GRANDIN, A., LECLAIRE, A. & RAVEAU, B. (1990b). J. Solid State Chem. 87, 360-365.
- BENABBAS, A., BOREL, M. M., GRANDIN, A., LECLAIRE, A. & RAVEAU, B. (1991). J. Solid State Chem. 92, 51-56.
- BOREL, M. M., GOREAUD, M., GRANDIN, A., LABBÉ, PH., LECLAIRE, A. & RAVEAU, B. (1991). Eur. J. Solid Inorg. Chem. 28, 93–129.
- CHOISNET, J., NGUYEN, N., GROULT, D. & RAVEAU, B. (1976). Mater. Res. Bull. 11, 887–894.
- COSTENTIN, G., BOREL, M. M., GRANDIN, A., LECLAIRE, A. & RAVEAU, B. (1991). J. Solid State Chem. 90, 279–284.
- CROSNIER, M. P., GUYOMARD, D., VERBAERE, A. & PIFFARD, Y. (1990). Eur. J. Solid Inorg. Chem. 27, 435-442.

LECLAIRE, A., BENABBAS, A., BOREL, M. M., GRANDIN, A. & RAVEAU, B. (1989). J. Solid State Chem. 83, 245–254.

MAGNELI, A. (1953). Acta Chem. Scand. 7, 315–323. SHANNON, J. & KATZ, L. (1970). Acta Cryst. B26, 105–109.

Acta Cryst. (1992). C48, 1747-1749

Structure Refinement of the Semi-Metallic Oxide SrTl₂O₄: a Neutron Diffraction Study

BY C. MICHEL,* M. HERVIEU, V. CAIGNAERT AND B. RAVEAU

Laboratoire CRISMAT-ISMRa-Campus, 2 Boulevard du Maréchal Juin, 14050 Caen CEDEX, France

(Received 12 September 1991; accepted 11 February 1992)

Abstract. Strontium thallium oxide, $SrTl_2O_4$, $M_r = 559.4$, orthorhombic, *Pnam*, a = 10.0451 (2), b = 11.6905 (2), c = 3.40860 (4) Å, V = 400.28 (2) Å³, Z = 4, $D_x = 9.28$ Mg m⁻³, powder neutron diffraction data, $\lambda = 1.594$ Å, T = 293 K, 457 reflections, $R_p = 0.048$, $R_{wp} = 0.064$, $R_i = 0.046$. The lattice belongs to the CaFe₂O₄-type structure; it is built up from double ribbons of edge-sharing TlO₆ octahedra, linked through their corners. Comparison is made with Tl—O distances in other oxides and especially with high T_c superconductors. The JCPDS File No. for SrTl₂O₄ is 43-1497.

Introduction. Recent developments of the high T_c thallium cuprates suggest that the thallium-oxygen layers are not inert for superconductivity (Raveau, Michel & Hervieu, 1989) but that they can play the role of hole reservoirs for the superconductive copper-oxygen layers. This viewpoint is supported by electronic structure calculations (Yu, Massida & Freeman, 1988; Kasowksi, Hsu & Herman, 1988; Hamann & Mattheiss, 1988; Jung, Whangbo, Herron & Torardi, 1989). Consequently, it appears that the knowledge of the chemical bond and also of the electronic properties of pure thallium(III) oxides, without copper, is important for the understanding of the role of thallium in superconductivity. Recently, a new phase, SrTl₂O₄, with semi-metallic properties, was isolated (Michel, Hervieu, Raveau, Greaney, Fine, Potenza & Greenblatt, 1991). It was shown to be isotypic with the $CaFe_2O_4$ structure (Hill, Peiser & Rait, 1956). Although the structure was correctly established from X-ray data, it did not allow the oxygen positions to be determined with accuracy. We report here on the refinement of the structure of this phase from neutron diffraction data.

Experimental. About 10 g of $SrTl_2O_4$ were synthesized from mixtures of Tl_2O_3 and SrO_2 in the ratio 1/1. The mixed powders were divided in five parts. Each part was pressed in the form of bars which were heated in evacuated silica ampoules at 1173 K for 6 h. After thermal treatment, the bars were crushed and the purity of the preparation was checked by X-ray diffraction.

Symmetry was established with systematic reflections: 0kl, k + l = 2n; h0l, h = 2n; space group *Pnam*. Powder neutron diffraction data were collected on a D2B diffractometer $[\lambda = 1.594 \text{ Å};$ Ge monochromator; 64 counters (³He, 506.6 kPa)] at ILL (Grenoble); angular range $10 \le 2\theta \le 156^{\circ}$ with increment of 0.05° (2θ).

Profile refinement used the computer program *DBW*3.2 (Wiles & Young, 1981). Scattering lengths were 0.5805, 0.702, 0.8785 (in 10^{-12} cm) for O, Sr and Tl respectively. Starting parameters were those previously refined from powder X-ray data (Michel *et al.*, 1991). Successive refinements of background, profile and cell parameters and then of positional parameters and isotropic thermal factors were made. Calculations were performed on 457 *hkl.* $R_p = 0.048$, $R_{wp} = 0.064$, $R_i = 0.046$. Further refinement details are given in Table 1. Experimental and calculated diffraction patterns are plotted in Fig. 1. Atomic parameters, compared to those obtained from X-ray diffraction, are given in Table 2.†

Discussion. These results do not differ dramatically from the X-ray data (Table 2) with respect to the positions of the metallic elements, whereas the difference between the O-atom positions is larger.

© 1992 International Union of Crystallography

^{*} To whom correspondence should be addressed.

[†] A list of primary diffraction data has been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55180 (11 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.